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1 Introduction

Field theories on noncommutative twisted spaces have been the object of active and recent

research: they can be considered as field theories on ordinary spacetime where the prod-

uct of fields is deformed into a twisted, noncommutative and associative ⋆-product. This

product generates infinitely many derivatives on the fields and introduces a dimensionful

noncommutativity parameter θ. Usually the first step is to take the classical theory and

deform it by replacing ordinary products by ⋆-products. This is a way to deform a theory

by introducing an infinite number of new interactions and higher derivative terms. Some

noncommutative deformations of scalar field theories exhibit nontrivial symmetries [1] and

provide new renormalizable models [2], others lead to new nontrivial integrable systems [3].

Noncommutative gauge theories have been intensively studied: they naturally arise under

T -duality [4], and also describe a low energy sector of D-branes physics [5]. The renormal-

izability of these theories is still problematic. Some partial results can be found in ref.s [6].

Noncommutative gravity theories have been constructed in the past in the context of

particular quantum groups [7] and more recently in the twisted noncommutative geometry

setting [8, 9, 11]. In the second order formalism of ref. [9] the deformed theory is invariant

under diffeomorphisms, but no gauge invariance on the tangent space (generalizing local

Lorentz symmetry) is considered, and therefore coupling to fermions has not been discussed.

In ref. [8] the noncommutative gravity action has a local GL(2, C) invariance acting on

tangent indices, but reduces in the commutative limit to gravity with a complex vielbein.

Other attempts to formulate noncommutative deformations of gravity in the first order

formalism can be found in [12].

In this paper, by using the tools of twisted differential geometry, we construct a geo-

metric theory of noncommutative gravity. The Lagrangian is seen to be a globally defined

4-form, hence invariant under diffeomorphisms as well as ⋆-diffeomorphisms. Since these

latter do not change the ⋆-product, they are a symmetry of the theory. The action is

also invariant under a GL(2, C) ⋆-gauge symmetry1 that reduces to ordinary local Lorentz

symmetry in the commutative limit. This we achieve by ⋆-extending the first order formal-

ism of gravity coupled to Dirac fermions, formulated in a convenient index-free form. For

the bosonic part our treatment does not differ much from the approach of Chamseddine.

However we find a charge conjugation condition on the noncommutative vierbein field,

consistent with the ⋆-gauge variations, that ensures the usual commutative limit. Thus

we do not have to cope with an extra vierbein in the θ → 0 limit, as in [8]. The charge

conjugation condition involves also the θ dependence of the fields. These we can imagine

expanded in powers of θ, and in principle this picture introduces infinitely many fields, one

for each power of θ. If we wish, we can use the Seiberg-Witten map to express all fields in

terms of the classical one, thereby ending up with a finite number of fields.

We then discuss a noncommutative Majorana condition, that allows coupling of non-

commutative gravity to Majorana fermions. The coupling of first order gravity to a Rarita-

Schwinger fermion (gravitino), a noncommutative generalization of D = 4, N = 1 super-

gravity, is discussed in a companion paper [14].

1In this paper noncommutative gauge symmetries are called for short ⋆-gauge symmetries and should

not be confused with the twisted gauge symmetries discussed in [13].
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The quantum treatment of the resulting higher-derivative theory is still virgin territory:

in this case, at least, we cannot do worse than in the commutative limit, where the theory is

not renormalizable and not finite. We do not expect the infinitely many derivatives to con-

spire with the infinities present in the commutative theory, and miraculously cancel its di-

vergences. In fact the Drinfeld twist corresponds to a braiding matrix with unit square, and

this leads to a differential geometry with usual derivatives, i.e. infinitesimal difference oper-

ators. On the other hand, we know that on quasi-triangular quantum groups derivatives be-

come finite difference operators: then one can indeed expect that theories constructed with

the tools of quasi-triangular differential geometry may be regulated by noncommutativity.

In this perspective the present study of twisted gravity may be seen as a preparatory step.

The paper proceeds as follows. In section 2 we recast the usual first order gravity cou-

pled to a fermion field in an index-free form, convenient for its noncommutative extension.

Section 3 recalls some basic tools of twisted noncommutative geometry, and in section 4

and 5 we present the action and the invariances of the noncommutative theory. Section

6 deals with the noncommutative version of MacDowell-Mansouri quadratic gravity. An

appendix on gamma matrices summarizes our conventions.

2 First order gravity coupled to fermions

2.1 Action

The usual action of first-order gravity coupled to fermions can be recast in an index-free

form, convenient for generalization to the non-commutative case:

S =

∫

Tr
(

iR ∧ V ∧ V γ5 −
[

(Dψ)ψ̄ − ψDψ̄
]

∧ V ∧ V ∧ V γ5

)

(2.1)

The fundamental fields are the 1-forms Ω (spin connection), V (vielbein) and the fermionic

0-form ψ (spin 1/2 field). The curvature 2-form R and the exterior covariant derivative on

ψ are defined by

R = dΩ − Ω ∧ Ω, Dψ = dψ − Ωψ (2.2)

with

Ω =
1

4
ωabγab, V = V aγa (2.3)

and thus are 4 × 4 matrices in the spinor representation. See appendix A for D = 4

gamma matrix conventions and useful relations. The Dirac conjugate is defined as usual:

ψ̄ = ψ†γ0. Then also (Dψ)ψ̄, ψDψ̄ are matrices in the spinor representation, and the trace

Tr is taken on this representation. Using the D = 4 gamma matrix identities:

γabc = iεabcdγ
dγ5, T r(γabγcγdγ5) = −4iεabcd (2.4)

leads to the usual action:

S =

∫

Rab ∧ V c ∧ V dεabcd + i
[

ψ̄γaDψ − (Dψ̄)γaψ
]

∧ V b ∧ V c ∧ V dεabcd (2.5)

with

R ≡
1

4
Rabγab, Rab = dωab − ωa

c ∧ ω
cb (2.6)

– 3 –
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2.2 Invariances

The action is invariant under local diffeomorphisms (it is the integral of a 4-form on a

4-manifold) and under the local Lorentz rotations:

δǫV = −[V, ǫ], δǫΩ = dǫ− [Ω, ǫ], δǫψ = ǫψ, δǫψ̄ = −ψ̄ǫ (2.7)

with

ǫ =
1

4
ǫabγab (2.8)

The invariance can be directly checked on the action (2.1) noting that

δǫR = −[R, ǫ], δǫDψ = ǫDψ, δǫ((Dψ)ψ̄) = −[(Dψ)ψ̄, ǫ], δǫ(ψDψ̄) = −[ψDψ̄, ǫ], (2.9)

using the cyclicity of the trace Tr (on spinor indices) and the fact that ǫ commutes with

γ5. The Lorentz rotations close on the Lie algebra:

[δǫ1 , δǫ2 ] = −δ[ǫ1,ǫ2] (2.10)

2.3 Hermiticity and charge conjugation

Since the vielbein V a and the spin connection ωab are real fields, the following condi-

tions hold:

γ0V γ0 = V †, −γ0Ωγ0 = Ω†, (2.11)

γ0

[

(Dψ)ψ̄
]

γ0 =
[

ψDψ̄
]†
, γ0

[

ψDψ̄
]

γ0 =
[

(Dψ)ψ̄
]†

(2.12)

and can be used to check that the action (2.1) is real.

Moreover, if C is the D = 4 charge conjugation matrix (antisymmetric and squaring

to −1), we have

CV C = V T , CΩC = ΩT (2.13)

since the matrices Cγa and Cγab are symmetric.

Similar relations hold for the gauge parameter ǫ = (1/4)εabγab:

− γ0ǫγ0 = ǫ†, CǫC = ǫT (2.14)

εab being real.

The charge conjugation of fermions:

ψC ≡ C(ψ̄)T (2.15)

can be extended to the bosonic fields V , Ω:

V C ≡ −CV TC, ΩC ≡ CΩTC (2.16)

Then the relations (2.13) can be written as:

V C = −V, ΩC = Ω (2.17)

– 4 –
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and are the analogues of the Majorana condition for the fermions:

ψC = ψ → ψ̄ = ψTC (2.18)

Note also that

(V ψ)C = V CψC (2.19)

In particular, if ψ is a Majorana fermion, V ψ is anti-Majorana. So far we have been

treating ψ as a Dirac fermion, and therefore reality of the action requires both terms in

square brackets in the action (2.1) or (2.5). If ψ is Majorana, the two terms give the same

contribution, and only one of them is necessary.

2.4 Field equations

Using the cyclicity of Tr in (2.1), the variation of V , Ω and ψ̄ yield respectively the Einstein

equation, the torsion equation and the (massless) Dirac equation in index-free form:

Tr
(

γaγ5[iV ∧R+ iR ∧ V −X ∧ V ∧ V − V ∧X ∧ V − V ∧ V ∧X]
)

= 0,

T r
(

γab[iT ∧ V − iV ∧ T + ψψ̄V ∧ V ∧ V − V ∧ V ∧ V ψψ̄]
)

= 0 (2.20)

V ∧ V ∧ V ∧Dψ − (T ∧ V ∧ V − V ∧ T ∧ V + V ∧ V ∧ T )ψ = 0 (2.21)

with

X ≡ (Dψ)ψ̄ − ψDψ̄ (2.22)

and where the torsion T = T aγa is given by:

T ≡ dV − Ω ∧ V − V ∧ Ω (2.23)

The torsion equation can be solved, and yields the known result:

T a = 6i ψ̄γbψ V b ∧ V a (2.24)

The Dirac equation (2.21) contains an extra term proportional to the torsion: this is due

to requiring a real action for gravity coupled to Dirac fermions. If one uses the (complex)

Dirac action

SDirac = −

∫

Tr[(Dψ)ψ̄ ∧ V ∧ V ∧ V γ5] (2.25)

the torsion terms in the Dirac equation (2.21) are not present.

3 Twist differential geometry: some tools

The noncommutative deformation of the gravity theories we construct in the next sections

relies on the existence (in the deformation quantization context, see for ex [15] ) of an asso-

ciative ⋆-product between functions and more generally an associative ∧⋆ exterior product

between forms, satisfying the following properties:

• Compatibility with the undeformed exterior differential:

d(τ ∧⋆ τ
′) = d(τ) ∧⋆ τ

′ + (−1)deg(τ)τ ∧⋆ dτ
′ (3.1)

– 5 –



J
H
E
P
0
6
(
2
0
0
9
)
0
8
6

• Compatibility with the undeformed integral (graded cyclicity property):
∫

τ ∧⋆ τ
′ = (−1)deg(τ)deg(τ ′)

∫

τ ′ ∧⋆ τ (3.2)

with deg(τ)+deg(τ ′) =D=dimension of the spacetime manifold, and where here τ and

τ ′ have compact support (otherwise stated we require (3.2) to hold up to boundary

terms).

• Compatibility with the undeformed complex conjugation:

(τ ∧⋆ τ
′)∗ = (−1)deg(τ)deg(τ ′)τ ′∗ ∧⋆ τ

∗ (3.3)

We describe here a (quite wide) class of twists whose ⋆-products have all these properties.

In this way we have constructed a wide class of noncommutative deformations of gravity

theories. Of course as a particular case we have the Groenewold-Moyal ⋆-product

f ⋆ g = µ
{

e
i
2
θρσ∂ρ⊗∂σf ⊗ g

}

, (3.4)

where the map µ is the usual pointwise multiplication: µ(f⊗g) = fg, and θρσ is a constant

antisymmetric matrix.

3.1 Twist

Let Ξ be the linear space of smooth vector fields on a smooth manifold M , and UΞ its

universal enveloping algebra. A twist F ∈ UΞ⊗UΞ defines the associative twisted product

f ⋆ g = µ
{

F−1f ⊗ g
}

(3.5)

where the map µ is the usual pointwise multiplication: µ(f⊗g) = fg. The product associa-

tivity relies on the defining properties of the twist [9, 15, 16]. Using the standard notation

F ≡ fα ⊗ fα, F−1 ≡ f
α
⊗ fα (3.6)

(sum over α understood) where fα, fα, f
α
, fα are elements of UΞ, the ⋆-product is expressed

in terms of ordinary products as:

f ⋆ g = f
α
(f)fα(g) (3.7)

Many explicit examples of twist are provided by the so-called abelian twists:

F = e−
i
2
θabXa⊗Xb (3.8)

where {Xa} is a set of mutually commuting vector fields globally defined on the manifold,2

and θab is a constant antisymmetric matrix. The corresponding ⋆-product is in general

2 We actually need only the twist F to be globally defined, not necessarily the single vector fields

Xa. An explicit example of this latter kind is given by the twist (3.8), that in an open neighbourhood

with coordinates t, x, y, z is defined by the commuting vector fields X1 = f(x, z) ∂
∂x

, X2 = h(y, z) ∂
∂y

, where

f(x, z) is a function of only the x and z variables and has compact support, and similarly h(y, z). This twist

is globally defined on the whole manifold by requiring it to be the identity 1⊗1 outside the {xa} coordinate

neighbourhood. The corresponding ⋆-product, defined on the whole spacetime manifold, is noncommutative

only inside this neighbourhood.

– 6 –
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position dependent because the vector fields Xa are in general x-dependent. In the special

case that there exists a global coordinate system on the manifold we can consider the vector

fields Xa = ∂
∂xa . In this instance we have the Moyal twist, cf. (3.4):

F−1 = e
i
2
θρσ∂ρ⊗∂σ (3.9)

3.2 Deformed exterior product

The deformed exterior product between forms is defined as

τ ∧⋆ τ
′ ≡ f

α
(τ) ∧ fα(τ ′) (3.10)

where f
α

and fα act on forms via the Lie derivatives Lf
α , Lfα

(Lie derivatives along products

uv · · · of elements of Ξ are defined simply by Luv··· ≡ LuLv · · · ). This product is associative,

and in particular satisfies:

τ ∧⋆ h ⋆ τ
′ = τ ⋆ h∧⋆ τ

′, h ⋆ (τ ∧⋆ τ
′) = (h ⋆ τ)∧⋆ τ

′, (τ ∧⋆ τ
′) ⋆ h = τ ∧⋆ (τ ′ ⋆ h) (3.11)

where h is a 0-form, i.e. a function belonging to Fun(M), the ⋆-product between functions

and one-forms being just a particular case of (3.10):

h ⋆ τ = f
α
(h)fα(τ), τ ⋆ h = f

α
(τ)fα(h) (3.12)

3.3 Exterior derivative

The exterior derivative satisfies the usual (graded) Leibniz rule, since it commutes with

the Lie derivative:

d(f ⋆ g) = df ⋆ g + f ⋆ dg (3.13)

d(τ ∧⋆ τ
′) = dτ ∧⋆ τ

′ + (−1)deg(τ) τ ∧⋆ dτ
′ (3.14)

3.4 Integration: graded cyclicity

If we consider an abelian twist (3.8) given by globally defined commuting vector fields

Xa, then the usual integral is cyclic under the ⋆-exterior products of forms, i.e., up to

boundary terms,
∫

τ ∧⋆ τ
′ = (−1)deg(τ)deg(τ ′)

∫

τ ′ ∧⋆ τ (3.15)

with deg(τ) + deg(τ ′) =D=dimension of the spacetime manifold. In fact we have
∫

τ ∧⋆ τ
′ =

∫

τ ∧ τ ′ = (−1)deg(τ)deg(τ ′)

∫

τ ′ ∧ τ = (−1)deg(τ)deg(τ ′)

∫

τ ′ ∧⋆ τ (3.16)

For example at first order in θ,
∫

τ ∧⋆ τ
′ =

∫

τ ∧ τ ′−
i

2
θab

∫

LXa(τ ∧LXb
τ ′) =

∫

τ ∧ τ ′−
i

2
θab

∫

diXa(τ ∧LXb
τ ′) (3.17)

where we used the Cartan formula LXa = diXa+iXad. More generally if the twist F satisfies

the condition S(f
α
)fα = 1, where the antipode S is defined on vector fields as S(v) = −v and

is extended to the whole universal enveloping algebra UΞ linearly and antimultiplicatively,

S(uv) = S(v)S(u), then a similar argument proves the graded cyclicity of the integral.3.

3Proof: we use Sweedler’s coproduct notation ∆(ζ) = ζ1 ⊗ ζ2, where ζ ∈ UΞ and the coproduct map

∆ : UΞ → UΞ ⊗ UΞ is defined on vector fields u ∈ Ξ by ∆(u) = u ⊗ 1 + 1 ⊗ u and is extended linearly

– 7 –
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3.5 Complex conjugation

If we choose real fields Xa in the definition of the twist (3.8), it is immediate to verify that:

(f ⋆ g)∗ = g∗ ⋆ f∗ (3.18)

(τ ∧⋆ τ
′)∗ = (−1)deg(τ)deg(τ ′)τ ′∗ ∧⋆ τ

∗ (3.19)

since sending i into −i in the twist (3.9) amounts to send θab into −θab = θba, i.e. to

exchange the order of the factors in the ⋆-product. More in general we can consider twists

F that satisfy the reality condition (cf. section 8 in [9] ) f
α∗

⊗ fα
∗

= S(fα) ⊗ S(f
α
). The

⋆-products associated to these twists satisfy properties (3.18), (3.19).

4 Noncommutative gravity coupled to fermions

4.1 Action and symmetries

Here we generalize section 2 to the noncommutative case, mostly by replacing exterior

products by deformed exterior products. Thus the action becomes:

S =

∫

Tr
(

iR ∧⋆ V ∧⋆ V γ5 − [(Dψ) ⋆ ψ̄ − ψ ⋆ Dψ̄] ∧⋆ V ∧⋆ V ∧⋆ V γ5

)

(4.1)

with

R = dΩ − Ω ∧⋆ Ω, Dψ = dψ − Ω ⋆ ψ (4.2)

Almost all formulae in section 2 continue to hold, with ⋆-products and ⋆-exterior

products. However, the expansion of the fundamental fields on the Dirac basis of gamma

matrices must now include new contributions:

Ω =
1

4
ωabγab + iω1 + ω̃γ5, V = V aγa + Ṽ aγaγ5 (4.3)

Similarly for the curvature:

R =
1

4
Rabγab + ir1 + r̃γ5 (4.4)

and multiplicatively to all UΞ (cf. [10]). In the notation ζ1 ⊗ ζ2 a sum is understood. The coproduct ∆

encodes the Leibniz rule property: for example ζ(τ ∧ τ̃) = ζ1(τ ) ∧ ζ2(τ̃). The coproduct is coassociative:

(ζ1)1 ⊗ (ζ1)2 ⊗ ζ2 = ζ1 ⊗ (ζ2)1 ⊗ (ζ2)2 and it is standard to denote this element simply by ζ1 ⊗ ζ2 ⊗ ζ3.

Compatibility between the coproduct, the antipode and the product implies ζ1S(ζ2)(τ̃) = ζ(1) τ̃ (cf. [10]).

Then we also have ζ1(τ ) ∧ ζ2S(ζ3)(τ̃) = ζ1(τ ) ∧ ζ2(1)τ̃ = ζ1(τ )ζ2(1) ∧ τ̃ = ζ(τ · 1) ∧ τ̃ = ζ(τ ) ∧ τ̃ . We now

apply this formula in the case ζ = f
α
, and compute

τ ∧⋆ τ
′ = f

α
(τ ) ∧ fα(τ ′) = f

α

1 (τ ) ∧ f
α

2 S(f
α

3 )fα(τ ′) = f
α

1 (τ ∧ S(f
α

2 )fα(τ ′))

= τ ∧ S(f
α
)fα(τ ′) + f

α′

1(τ ∧ S(f
α′

2)fα(τ ′)) = τ ∧ τ
′ + total derivative

where in the first line we have used the definition f
α

1 ⊗ f
α

2 ⊗ f
α

3 = ∆(f
α

1 ) ⊗ f
α

2 , and in the second line we

observed that the coproduct ∆(f
α
) = f

α

1 ⊗ f
α

2 contains the term 1 ⊗ f
α

(that is obtained by considering

for each vector field entering f
α

only the term 1 ⊗ u of the coproduct rule ∆(u) = u ⊗ 1 + 1 ⊗ u) plus

other remaining terms that we denoted f
α′

1 ⊗ f
α′

2. Now by construction each f
α′

1 contains at least one

vector field, if we assume that the twist satisfies F−1 = 1⊗ 1+ · · · , where · · · denotes sums of (products of

vector fields) ⊗ (products of vector fields). Since vector fields act via the Lie derivative, the Cartan formula

Lu = iud + diu implies that f
α′

1(τ ∧ S(f
α′

2)fα(τ ′)) is a total derivative, the Lie derivative acting on a form

of highest degree (top form) so that its iud part vanishes.

– 8 –
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and for the gauge parameter:

ǫ =
1

4
εabγab + iε1 + ε̃γ5 (4.5)

Indeed now the ⋆-gauge variations read:

δǫV = −V ⋆ ǫ+ ǫ ⋆ V, δǫΩ = dǫ− Ω ⋆ ǫ+ ǫ ⋆ Ω, δǫψ = ǫ ⋆ ψ, δǫψ̄ = −ψ̄ ⋆ ǫ (4.6)

and in the variations for V and Ω also anticommutators of gamma matrices appear, due to

the noncommutativity of the ⋆-product. Since for example the anticommutator {γab, γcd}

contains 1 and γ5, we see that the corresponding fields must be included in the expansion

of Ω. Similarly, V must contain a γaγ5 term due to {γab, γc}. Finally, the composition law

for gauge parameters becomes:

[δǫ1 , δǫ2 ] = δǫ2⋆ǫ1−ǫ1⋆ǫ2 (4.7)

so that ǫ must contain the 1 and γ5 terms, since they appear in the composite parameter

ǫ2 ⋆ ǫ1 − ǫ1 ⋆ ǫ2.

The invariance of the noncommutative action (4.1) under the ⋆-variations is demon-

strated in exactly the same way as for the commutative case, noting that

δǫR = −R⋆ǫ+ ǫ ⋆R, δǫDψ = ǫ ⋆Dψ, δǫ((Dψ)⋆ ψ̄) = −(Dψ)⋆ ψ̄ ⋆ ǫ+ ǫ ⋆ (Dψ)⋆ ψ̄ (4.8)

etc., and using now, besides the cyclicity of the trace Tr and the fact that ǫ still commutes

with γ5, also the graded cyclicity of the integral.

The local ⋆-symmetry satisfies the Lie algebra of GL(2, C), and centrally extends the

SO(1, 3) Lie algebra of the commutative theory.

Finally, the ⋆-action (4.1) is invariant under diffeomorphisms generated by the Lie

derivative, in the sense that
∫

Lv(4−form) =

∫

(ivd+ div)(4−form) =

∫

d(iv(4−form)) = boundary term (4.9)

since d(4−form) = 0 on a 4-dimensional manifold.4

We have constructed a geometric lagrangian where the fields are exterior forms and

the ⋆-product is given by the Lie derivative action of the twist on forms. The twist F

in general is not invariant under the diffeomorphism Lv. However we can consider the

⋆-diffeomorphisms of ref. [9] (see also [15], section 8.2.4), generated by the ⋆-Lie deriva-

tive. This latter acts trivially on the twist F but satisfies a deformed Leibniz rule. ⋆-Lie

derivatives generate infinitesimal noncommutative diffeomorphisms and leave invariant the

action and the twist. They are noncommutative symmetries of our action.

4 In order to show that the integrand is a globally defined 4-form we need to assume that the vielbein

one-form V a is globally defined (and therefore that the manifold is parallelizable), the twisted exterior

product being globally defined (because the twist is globally defined). If this is the case, then due to the

local GL(2, C) ⋆-invariance the action is independent of the vielbein used. On the other hand, if the vielbein

V a is only locally defined in open coverings of the manifold, then we cannot construct a global 4-form, since

the local GL(2, C) ⋆-invariance holds only under integration.
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Finally in our geometric action no coordinate indices µ, ν appear, and this implies in-

variance of the action under (undeformed) general coordinate transformations.5 Otherwise

stated every contravariant tensor index µ is contracted with the corresponding covariant

tensor index µ, for example Xa = Xµ
a ∂µ and V a = V a

µ dx
µ.

4.2 Field equations

Using the cyclicity of Tr and the graded cyclicity of the integral in (4.1), the variation of

V , Ω and ψ̄ yield respectively the noncommutative Einstein equation, torsion equation

and Dirac equation in index-free form:

Tr[Γa,a5(iV ∧⋆ R+ iR ∧⋆ V −X ∧⋆ V ∧⋆ V − V ∧⋆ X ∧⋆ V − V ∧⋆ V ∧⋆ X)] = 0

Tr[Γab,1,5(iT ∧⋆ V − iV ∧⋆ T + ψ ⋆ ψ̄ ⋆ V ∧⋆ V ∧⋆ V − V ∧⋆ V ∧⋆ V ⋆ ψ ⋆ ψ̄)] = 0 (4.10)

V ∧⋆ V ∧⋆ V ∧⋆ Dψ − (T ∧⋆ V ∧⋆ V − V ∧⋆ T ∧⋆ V + V ∧⋆ V ∧⋆ T ) ⋆ ψ = 0

where Γa,a5 indicates γa and γaγ5 (thus there are two distinct equations) and likewise

for Γab,1,5 (three equations corresponding to γab, 1 and γ5). The noncommutative torsion

two-form is defined by:

T ≡ T aγa + T̃ aγaγ5 ≡ dV − Ω ∧⋆ V − V ∧⋆ Ω (4.11)

The torsion equation (4.10) can be written as:

[iT ∧⋆ V − iV ∧⋆ T + ψ ⋆ ψ̄ ⋆ V ∧⋆ V ∧⋆ V − V ∧⋆ V ∧⋆ V ⋆ ψ ⋆ ψ̄, γ5]+ = 0 (4.12)

Indeed the anticommutator with γ5 selects the γab, 1 and γ5 components. This equation

can be solved for the torsion:

T =
i

2
[ψ ⋆ ψ̄ ⋆ V ∧⋆ V + V ∧⋆ ψ ⋆ ψ̄ ⋆ V + V ∧⋆ V ⋆ ψ ⋆ ψ̄, γ5]γ5 (4.13)

as can be verified by substitution into (4.12).

4.3 θ - dependent fields

We can rewrite the Moyal twist as:

F−1 = e
i
2
θΘρσ∂ρ⊗∂σ (4.14)

where θ is a dimensionful parameter (so that Θρσ is a numerical matrix). In the spirit of

the Seiberg-Witten map [5], the fields and the gauge parameter can be considered functions

of x and θ. Expanding a field φ in powers of θ:

φθ(x) = φ0(x) + θφ1(x) + θ2φ2(x) + . . . , εθ(x) = ε0(x) + θε1(x) + θ2ε2(x) + . . . (4.15)

introduces an infinite tower of x - dependent fields: a finite number of them enters in the

action (4.1) at each given order in θ. At 0-th order only the classical fields φ0(x) contribute.

5General coordinate transformations are diffeomorphisms of an open coordinate neighbourhood of the

manifold, not of the whole manifold.
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The gauge variations of all φi are deduced by expanding the ⋆-gauge transformations in (4.6)

in powers of θ. Clearly the classical fields φ0 transform with the classical gauge variations δ0ǫ .

If one feels uncomfortable with these new fields φi, the Seiberg-Witten map can be

used to relate the higher-order fields to the classical ones in a way consistent with the ⋆ -

gauge transformations δǫ:

δǫφ(φ0) = φ(δ0ǫφ0) (4.16)

so that the ⋆-deformed theory will contain only the φ0 fields [5, 17].

All the fields V a, Ṽ a, ωab, ω, and ω̃ contained in the action (4.1) are then θ-expanded,

and the 0-th order action contains their θ → 0 limit.

4.4 Hermiticity and charge conjugation

Hermiticity conditions can be imposed on V , Ω and the gauge parameter ǫ:

γ0V γ0 = V †, −γ0Ωγ0 = Ω†, −γ0ǫγ0 = ǫ† (4.17)

Moreover it is easy to verify the analogues of conditions (2.12):

γ0[(Dψ) ⋆ ψ̄]γ0 = [ψ ⋆ Dψ̄]†, γ0[ψ ⋆ Dψ̄]γ0 = [Dψ ⋆ ψ̄]† (4.18)

These hermiticity conditions are consistent with the gauge variations, as in the commutative

case, and can be used to check that the action (4.1) is real. On the component fields V a,

Ṽ a, ωab, ω, and ω̃, and on the component gauge parameters εab, ε, and ε̃ the hermiticity

conditions (4.17) imply that they are real fields.

The charge conjugation relations (2.13), however, cannot be exported to the noncom-

mutative case as they are. Indeed they would imply the vanishing of the component fields

Ṽ a, ω, and ω̃ (whose presence is necessary in the noncommutative case) and anyhow would

not be consistent with the ⋆-gauge variations.

An essential modification is needed, and makes use of the θ dependence of the non-

commutative fields:

CVθ(x)C = V−θ(x)
T , CΩθ(x)C = Ω−θ(x)

T , Cεθ(x)C = ε−θ(x)
T (4.19)

These conditions can be checked to be consistent with the ⋆-gauge transformations. For

example CVθ(x)
TC can be shown to transform in the same way as V−θ(x):

δǫ(CV
T
θ C) = C(δǫVθ)

TC = C(−ǫTθ ⋆−θ V
T
θ + V T

θ ⋆−θ ǫ
T
θ )C =

= ǫ−θ ⋆−θ V−θ − V−θ ⋆−θ ǫ−θ = δǫV−θ (4.20)

where we have used C2 = −1 and the fact that the transposition of a ⋆-product of matrix-

valued fields interchanges the order of the matrices but not of the ⋆-multiplied fields. To

interchange both it is necessary to use the ”reflected” ⋆−θ product obtained by changing

the sign of θ, since

f ⋆θ g = g ⋆−θ f (4.21)

for any two functions f, g.
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For the component fields and gauge parameters the charge conjugation conditions imply:

V a
θ = V a

−θ, ωab
θ = ωab

−θ (4.22)

Ṽ a
θ = −Ṽ a

−θ, ωθ = −ω−θ, ω̃θ = −ω̃−θ, (4.23)

Similarly for the gauge parameters:

εab
θ = εab

−θ (4.24)

εθ = −ε−θ, ε̃θ = −ε̃−θ (4.25)

Finally, let us consider the charge conjugate spinor:

ψC ≡ C(ψ̄)T (4.26)

It transforms under ⋆-gauge variations as:

δǫψ
C = C(δǫψ̄)T = C(−ψ̄ ⋆ ǫ)T = C(−ǫT ⋆−θ ψ

∗) = CǫTC ⋆−θ Cψ
∗ = ǫ−θ ⋆−θ ψ

C (4.27)

i.e. it transforms in the same way as ψ−θ. Then we can impose the noncommutative

Majorana condition:

ψC
θ = ψ−θ ⇒ ψ†

θγ0 = ψT
−θC (4.28)

4.5 Commutative limit θ → 0

In the commutative limit the action reduces to the usual action of gravity coupled to

fermions of eq. (2.1). Indeed in virtue of the charge conjugation conditions on V and

Ω, the component fields Ṽ a, ω, and ω̃ all vanish in the limit θ → 0 (see the second line

of (4.23)), and only the classical spin connection ωab, vierbein V a and Dirac fermion ψ

survive. Similarly the gauge parameters ε, and ε̃ vanish in the commutative limit.

5 Component analysis

We give here the action (4.1) in terms of the component fields V a, ωab, Ṽ a, ω, and ω̃, and

the gauge variations of these fields.

5.1 Action for the component fields

S =

∫

Rab ∧⋆ (V c ∧⋆ V
d − Ṽ c ∧⋆ Ṽ

d)ǫabcd

+2i Rab ∧⋆ (−Va ∧⋆ Ṽb + Ṽa ∧⋆ Vb)

+4i r ∧⋆ (V a ∧⋆ Ṽa − Ṽ a ∧⋆ Va)

+4i r̃ ∧⋆ (V a ∧⋆ Va − Ṽ a ∧⋆ Ṽa)

+Tr[(Dψ ⋆ ψ̄ − ψ ⋆ Dψ̄)γd] ∧⋆ [iǫabcd(V
a ∧⋆ V

b ∧⋆ V
c

−V a ∧⋆ Ṽ
b ∧⋆ Ṽ

c + Ṽ a ∧⋆ V
b ∧⋆ Ṽ

c − Ṽ a ∧⋆ Ṽ
b ∧⋆ V

c)

+V a ∧⋆ Va ∧⋆ Ṽd − V a ∧⋆ Ṽa ∧⋆ Vd + Ṽ a ∧⋆ Va ∧⋆ Vd − Ṽ a ∧⋆ Ṽa ∧⋆ Ṽd
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+Vd ∧⋆ V
a ∧⋆ Ṽa − Vd ∧⋆ Ṽ

a ∧⋆ Va + Ṽd ∧⋆ V
a ∧⋆ Va − Ṽd ∧⋆ Ṽ

a ∧⋆ Ṽa

−V a ∧⋆ Vd ∧⋆ Ṽa + V a ∧⋆ Ṽd ∧⋆ Va − Ṽ a ∧⋆ Vd ∧⋆ Va + Ṽ a ∧⋆ Ṽd ∧⋆ Ṽa]

+Tr[(Dψ ⋆ ψ̄ − ψ ⋆ Dψ̄)γdγ5] ∧⋆ [iǫabcd(V
a ∧⋆ V

b ∧⋆ Ṽ
c

−V a ∧⋆ Ṽ
b ∧⋆ V

c + Ṽ a ∧⋆ V
b ∧⋆ V

c − Ṽ a ∧⋆ Ṽ
b ∧⋆ Ṽ

c)

+V a ∧⋆ Va ∧⋆ Vd − V a ∧⋆ Ṽa ∧⋆ Ṽd + Ṽ a ∧⋆ Va ∧⋆ Ṽd − Ṽ a ∧⋆ Ṽa ∧⋆ Vd

+Vd ∧⋆ V
a ∧⋆ Va − Vd ∧⋆ Ṽ

a ∧⋆ Ṽa + Ṽd ∧⋆ V
a ∧⋆ Ṽa − Ṽd ∧⋆ Ṽ

a ∧⋆ Va

−V a ∧⋆ Vd ∧⋆ Va + V a ∧⋆ Ṽd ∧⋆ Ṽa − Ṽ a ∧⋆ Vd ∧⋆ Ṽa + Ṽ a ∧⋆ Ṽd ∧⋆ Va] (5.1)

with

Rab = dωab −
1

2
ωa

c ∧⋆ ω
cb +

1

2
ωb

c ∧⋆ ω
ca −

i

4
(ωab ∧⋆ ω + ω ∧⋆ ω

ab) −

−
i

8
εab

cd(ω
cd ∧⋆ ω̃ + ω̃ ∧⋆ ω

cd) (5.2)

r = dω +
1

8
ωab ∧⋆ ωab + ω ∧⋆ ω − ω̃ ∧⋆ ω̃

r̃ = dω̃ − i(ω ∧⋆ ω̃ + ω̃ ∧⋆ ω) +
i

16
εabcdω

ab ∧⋆ ω
cd (5.3)

5.2 Gauge variations

δǫV
a =

1

2
(εab ⋆ V

b + V b ⋆ εab) +
i

4
εabcd(Ṽ

b ⋆ εcd − εcd ⋆ Ṽ b)

+ε ⋆ V a − V a ⋆ ε− ε̃ ⋆ Ṽ a − Ṽ a ⋆ ε̃ (5.4)

δǫṼ
a =

1

2
(εab ⋆ Ṽ

b + Ṽ b ⋆ εab) +
i

4
εabcd(V

b ⋆ εcd − εcd ⋆ V b)

+ε ⋆ Ṽ a − Ṽ a ⋆ ε− ε̃ ⋆ V a − V a ⋆ ε̃ (5.5)

δǫω
ab =

1

2
(εac ⋆ ω

cb − εbc ⋆ ω
ca + ωcb ⋆ εac − ωca ⋆ εbc)

+
1

4
(εab ⋆ ω − ω ⋆ εab) +

i

8
εab

cd(ε
cd ⋆ ω̃ − ω̃ ⋆ εcd) (5.6)

+
1

4
(ε ⋆ ωab − ωab ⋆ ε) +

i

8
εab

cd(ε̃ ⋆ ω
cd − ωcd ⋆ ε̃) (5.7)

δǫω =
1

8
(ωab ⋆ εab − εab ⋆ ω

ab) + ε ⋆ ω − ω ⋆ ε+ ε̃ ⋆ ω̃ − ω̃ ⋆ ε̃ (5.8)

δǫω̃ =
i

16
εabcd(ω

ab ⋆ εcd − εcd ⋆ ωab) + ε ⋆ ω̃ − ω̃ ⋆ ε+ ε̃ ⋆ ω − ω ⋆ ε̃ (5.9)

6 Noncommutative Mac-Dowell Mansouri gravity

6.1 Action and symmetries

As already discussed in [18], the noncommutative generalization of the Mac-Dowell Man-

souri action [19] reads:

S = i

∫

Tr[R ∧⋆ Rγ5] (6.1)
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with

R = dΩ − Ω ∧⋆ Ω (6.2)

and

Ω =
1

4
ωabγab + iω1 + ω̃γ5 + iV aγa + iṼ aγaγ5 (6.3)

The GL(2, C) ⋆-gauge variations act as:

δǫΩ = dǫ− Ω ⋆ ǫ+ ǫ ⋆Ω (6.4)

with

ǫ =
1

4
εabγab + iε1 + ε̃γ5 (6.5)

so that

δǫR = −R ⋆ ǫ+ ǫ ⋆ R (6.6)

The invariance of the action (6.1) under ⋆-gauge transformations is easily checked, taking

into account the transformation of R, the cyclicity of the trace Tr, the graded cyclicity of

the integral and the fact that ǫ still commutes with γ5.

6.2 Hermiticity and charge conjugation

Hermiticity conditions can again be imposed on Ω and on the gauge parameter ǫ:

− γ0Ωγ0 = Ω†, −γ0ǫγ0 = ǫ† (6.7)

These conditions are consistent with the gauge variations, and can be used to check that

the action (6.1) is real. Again the hermiticity conditions imply that the component fields

V a, Ṽ a, ωab, ω, ω̃, and the component gauge parameters εab, ε, ε̃ are real.

The charge conjugation conditions are again

CΩθ(x)C = Ω(x)T−θ, Cεθ(x)C = ε(x)T−θ (6.8)

These conditions are consistent with the ⋆-gauge transformations.

For the component fields and gauge parameters the charge conjugation conditions imply

the same relations (4.23), (4.25) as in section 4.

6.3 Commutative limit θ → 0

In the commutative limit the action reduces to the usual action of Mac Dowell-Mansouri

gravity. Indeed the charge conjugation conditions on Ω ensure that the component fields

Ṽ a, ω, and ω̃ all vanish in the limit θ → 0, and only the classical spin connection ωab,

vierbein V a survive. Moreover the gauge parameters ε and ε̃ vanish in the limit because

of the charge conjugation condition on ǫ , and only the parameter εab corresponding to

Lorentz symmetry survives.
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7 Conclusions

We have constructed a geometric noncommutative action of first-order gravity coupled to

fermions, invariant under ⋆-diffeomorphisms and GL(2, C) ⋆-gauge transformations. The

commutative limit reproduces the usual action with no extra fields, and the ⋆-invariance

reduces to ordinary Lorentz invariance. A charge conjugation condition, consistent with the

⋆-symmetries, is imposed on the noncommutative vielbein and connection, and takes into

account their θ-dependence. This condition allows to recover the usual commutative limit.

Finally, using the same tools of twisted differential geometry, we find the noncommutative

extension of the Mac-Dowell Mansouri action.

A Gamma matrices in D = 4

We summarize in this appendix our gamma conventions in D = 4.

ηab = (1,−1,−1,−1), {γa, γb} = 2ηab, [γa, γb] = 2γab, (A.1)

γ5 ≡ iγ0γ1γ2γ3, γ5γ5 = 1, ε0123 = −ε0123 = 1, (A.2)

γ†a = γ0γaγ0, γ†5 = γ5 (A.3)

γT
a = −CγaC

−1, γT
5 = Cγ5C

−1, C2 = −1, CT = −C (A.4)

A.1 Useful identities

γaγb = γab + ηab (A.5)

γabγ5 =
i

2
ǫabcdγ

cd (A.6)

γabγc = ηbcγa − ηacγb − iεabcdγ5γ
d (A.7)

γcγab = ηacγb − ηbcγa − iεabcdγ5γ
d (A.8)

γaγbγc = ηabγc + ηbcγa − ηacγb − iεabcdγ5γ
d (A.9)

γabγcd = −iεab
cdγ5 − 4δ

[a
[c γ

b]
d] − 2δab

cd (A.10)

where δab
cd = 1

2(δa
c δ

b
d−δ

a
dδ

b
c), and index antisymmetrizations in square brackets have weight 1.

A.2 Charge conjugation and Majorana condition

Dirac conjugate ψ̄ ≡ ψ†γ0 (A.11)

Charge conjugate spinor ψc = C(ψ̄)T (A.12)

Majorana spinor ψc = ψ ⇒ ψ̄ = ψTC (A.13)
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